Πέμπτη, 11 Φεβρουαρίου 2010

Η θεωρία του Χάους (το φαινόμενο της πεταλούδας και fractals)

http://www.livepedia.gr/images/3/3c/LorenzAttractor-01-wik.png



http://cwaichert.files.wordpress.com/2009/02/chaos-theory.jpg



http://www.student.nada.kth.se/~d96-era/fractal.gif




Μέχρι τα τέλη του 19ου αιώνα, η εύρεση της τροχιάς κάθε ουράνιου σώματος γινόταν προσεγγιστικά, με τη βοήθεια των νόμων του Νεύτωνα και Κέπλερ, αφού δεν υπήρχαν computer για περισσότερη ακρίβεια. Οι κινήσεις των πλανητών και των άλλων ουρανίων σωμάτων θεωρούνταν περιοδικές και κανονικές σαν τη κίνηση ενός τέλειου εκκρεμούς. Όμως ο Γάλλος μαθηματικός και αστρονόμος Henri Poincare έκανε μια ανακάλυψη, η οποία οδήγησε στη γέννηση ενός νέου κλάδου της επιστήμης: του Χάους. Συγκεκριμένα διαπίστωσε πως δεν μπορεί να προβλεφθεί η τροχιά οποιουδήποτε ουράνιου σώματος που δέχεται την επίδραση δύο ή περισσοτέρων άλλων σωμάτων.
Ο Poincare αποκάλυψε το χάος στο Ηλιακό σύστημα και μαζί ανακάλυψε την απρόβλεπτη εξέλιξη ενός μη γραμμικού συστήματος. Είχε κατανήσει πως πολύ μικρές επιδράσεις μπορούν να μεγεθυνθούν μέσω της ανάδρασης. Γι’ αυτό και διατύπωσε την άποψη “Μια ελάχιστη αιτία που διαφεύγει της προσοχής μπορεί να προκαλέσει ένα σημαντικό αποτέλεσμα“.
Η γέννηση του χάους και του απρόβλεπτου ήταν γεγονός. Αλλά χρειάστηκε να περάσουν 80 χρόνια απο τότε για να συνειδητοποιήσουν οι αστρονόμοι και οι υπόλοιποι επιστήμονες τη σπουδαιότητα αυτής της ανακάλυψης.  Το 1954 πρώτος την κατανόησε ο σοβιετικός επιστήμονας A.Kolmogorov και ακολούθησαν και άλλοι.
Ο πρώτος όμως που διέκρινε πως η επανάληψη (iteration) γεννά το χάος, ανήκει στον Αμερικανό μετεωρολόγο Edward Lorenz που εργαζόταν στο MIT. Στα μέσα του χειμώνα 1961,  εργαζόταν στον υπολογιστή του ΜΙΤ για να λύσει μερικές μη γραμμικές εξισώσεις που περιέγραφαν το μοντέλο της γήινης ατμόσφαιρας. Κάποια ημέρα για να ελέγξει μια πρόγνωση που είχε πάρει από τον υπολογιστή, ξαναέδωσε τα δεδομένα του για τη θερμοκρασία, την ατμοσφαιρική   πίεση και τη διεύθυνση του ανέμου, αλλά αυτή τη φορά με στογγυλοποιημένους αριθμούς. Και περίμενε να του βγάλει ο υπολογιστής την ίδια πρόγνωση. Το αποτέλεσμα όμως τον σόκαρε. Τα νέα αποτελέσματα ήταν τελείως διαφορετικά. Αμέσως κατάλαβε πως η μεγένθυση των διαφορών οφείλεται στο συνδυασμό μη γραμμικότητας και επανάληψης. Για την ιστορία, αναφέρουμε πως αντί να βάλει τον αριθμό 0.506127 με έξι δεκαδικά ψηφία, έβαλε 0.506. Με μία έννοια ήτα απόλυτα λογική σκέψη.
Στην εικόνα φαίνεται μια εκτύπωση που πήρε ο Lorenz το 1961. Από το ίδιο σημείο εκκίνησης ο Lorenz είδε τον καιρό που έδινε ο υπολογιστής της IBM να δημιουργεί σχήματα που εξελλίσονταν όλο και πιό διαφορετικά μέχρι που κάθε ομοιότητα εξαφανίστηκε.
Στον ίδιο τον Lorenz οφείλεται και η θεωρία για την πεταλούδα που πετάει στο Χονγκ-Κονγκ και μπορεί να δημιουργήσει καταιγίδα στη Νέα Υόρκη. Ξαφνικά οι επιστήμονες συνειδητοποίησαν πως σε αιτιοκρατικά δυναμικά συστήματα, η δυνατότητα γέννησης χάους (μη προβλεψιμότητας) παραμονεύει σε κάθε λεπτομέρεια.
Η ονομασία όμως Θεωρία του Χάους οφείλεται στον μαθηματικό του Πανεπιστημίου του Maryland Jim York μόλις το 1975. Μια θεωρία που συνεχώς εξελίσσεται κυριεύοντας όλους τους τομείς της επιστημονικής έρευνας: από την διαστημική έως τη δυναμική των υγρών, τις ακτίνες laser έως τις χημικές αντιδράσεις, από τις τηλεπικοινωνίες (λευκός θόρυβος της γραμμής) έως την καρδιολογία, από την οικονομία έως την νευροφυσιολογία. Αλλά ενδιαφέρει τελευταία και τους μουσικούς, τους συγγραφείς, τους ψυχαναλυτές και άλλους πολλούς.


 ΜΕΡΙΚΑ ΑΚΟΜΑ:Από τη Βικιπαίδεια, την ελεύθερη εγκυκλοπαίδεια


Ένα μέρος του συνόλου Μάντελμπροτ, του πιο γνωστού φράκταλ.
Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο βαθμό μεγέθυνσης, κι έτσι συχνά αναφέρεται σαν "απείρως περίπλοκο". Το φράκταλ παρουσιάζεται ως "μαγική εικόνα" που όσες φορές και να μεγεθυνθεί οποιοδήποτε τμήμα του θα συνεχίζει να παρουσιάζει ένα εξίσου περίπλοκο σχέδιο με μερική ή ολική επανάληψη του αρχικού. Χαρακτηριστικό επομένως των φράκταλ είναι η λεγόμενη αυτο-ομοιότηταself-similarity) σε κάποιες δομές τους, η οποία εμφανίζεται σε διαφορετικά επίπεδα μεγέθυνσης. (
Τα φράκταλ σε πολλές περιπτώσεις μπορεί να προκύψουν από τύπο που δηλώνει αριθμητική, μαθηματική ή λογική επαναληπτική διαδικασία ή συνδυασμό αυτών. Η πιο χαρακτηριστική ιδιότητα των φράκταλ είναι ότι είναι γενικά περίπλοκα ως προς τη μορφή τους, δηλαδή εμφανίζουν ανωμαλίες στη μορφή σε σχέση με τα συμβατικά γεωμετρικά σχήματα. Κατά συνέπεια δεν είναι αντικείμενα τα οποία μπορούν να οριστούν με τη βοήθεια της ευκλείδειας γεωμετρίας. Αυτό υποδεικνύεται από το ότι τα φράκταλ, όπως έχει αναφερθεί παραπάνω, έχουν λεπτομέρειες, οι οποίες όμως γίνονται ορατές μόνο μετά από μεγέθυνσή τους σε κάποια κλίμακα.

Το σύνορο του συνόλου Μάντελμπροτ έχει κι αυτό φράκταλ δομή.
Για να γίνει αντιληπτός αυτός ο διαχωρισμός των φράκταλ σε σχέση με την ευκλείδεια γεωμετρία, αναφέρουμε ότι, αν μεγεθύνουμε κάποιο αντικείμενο το οποίο μπορεί να οριστεί με την ευκλείδεια γεωμετρία, παραδείγματος χάριν την περιφέρεια μιας έλλειψης, αυτή μετά από αλλεπάλληλες μεγεθύνσεις θα εμφανίζεται απλά ως ευθύγραμμο τμήμα. Η συμβατική ιδέα της καμπυλότητας η οποία αντιπροσωπεύει το αντίστροφο της ακτίνας ενός προσεγγίζοντος κύκλου, δεν μπορεί ωφέλιμα να ισχύσει στα φράκταλ επειδή αυτή εξαφανίζεται κατά τη μεγέθυνση. Αντίθετα, σε ένα φράκταλ, θα εμφανίζονται κατόπιν μεγεθύνσεων λεπτομέρειες που δεν ήταν ορατές σε μικρότερη κλίμακα μεγέθυνσης.
Φράκταλ απαντώνται και στη φύση, χωρίς όμως να υπάρχει άπειρη λεπτομέρεια στη μεγέθυνση όπως στα φράκταλ που προκύπτουν από μαθηματικές σχέσεις. Ως παραδείγματα φράκταλ στη φύση, αναφέρονται το σχέδιο των νιφάδων του χιονιού, τα φύλλα των φυτών ή οι διακλαδώσεις των αιμοφόρων αγγείων.
Ο όρος προτάθηκε από τον Μπενουά Μάντελμπροτ (Benoît Mandelbrot) το 1975 και προέρχεται από τη λατινική λέξη fractus, που σημαίνει "σπασμένος", "κατακερματισμένος".
Για να κατανοήσουμε καλύτερα την αναγκαιότητα εισαγωγής των φράκταλ αναφέρουμε το εξής παράδειγμα:
Η περίμετρος ενός νησιού εννοείται ότι είναι ορισμένη. Ωστόσο, αν χρησιμοποιήσουμε ακρίβεια ενός μέτρου για να την μετρήσουμε, θα την βρούμε μικρότερη από ότι πραγματικά είναι γιατί δεν θα μπορέσουμε να μετρήσουμε τις κοιλότητες που είναι μικρότερες του ενός μέτρου. Αν μετρήσουμε με ακρίβεια ενός εκατοστού, πάλι θα χάσουμε ορισμένες κοιλότητες. Έτσι καταλήγουμε σε απειροστά μικρή μονάδα μέτρησης και η περίμετρος του νησιού θα γίνει άπειρη. Η επιφάνεια όμως του νησιού, η έκτασή του δηλαδή, είναι ορισμένη. Το παράδοξο αυτό, το οποίο η Ευκλείδεια Γεωμετρία αδυνατεί να εξηγήσει, αντιμετωπίζεται με τα φράκταλ.







Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Site Translator-Μεταφραστής

Αναγνώστες

Το banner μας


Αντιγράψτε τον κωδικό για να τοποθετήσετε αυτό το banner στη σελίδα σας!

Sync it